
Shushan Arakelyan , Rocktim Jyoti Das, Yi Mao, Xiang Ren 
University of Southern California, IIT Delhi, Microsoft Azure AI (correspondence to: shushana@usc.edu)

Exploring Distributional 
Shifts in Large Language 
Models for Code Analysis

Analysis Setup

AnalysisTL; DR

We study how three large language models with code capabilities - 
CodeT5, Codex, and ChatGPT - generalize to out-of-domain data on two 
applications code summarization and code generation. We establish 
that all models are subject to distribution shift naturally occurring in 
software. Finally, we show how different domain adaptation techniques 
handle such distribution shift.

FoldersRepo-s Org-s

We used CodeSearchNet dataset’s JavaScript portion for our study. 
After grouping data by domain, we filter the domains to eliminate those 
containing less than 96 samples.

Train Train ≥ 96 Test ≥ 96
org 9737 195 8
repos 15858 147 15
folders 25268 100 10

Introduction

In this work

Motivation

Open source Yes/No
Global development Yes/No
Code reviews Yes/No
Static checkers Yes/No

…

“What characteristics 
guarantee transferability?”

Researchers using machine learning 
approaches for tackling issues in 
software engineering or cyber security 
have noticed that statistical learning 
systems trained on one project do not 
generalize well to new projects.

We study the challenges of distribution shifts that are stemming from 
the hierarchical nature of software data.

Studies looked at extensive lists of possible culprits that would predict 
whether or not a machine learning model built for one software system 
would generalize to a new software system.

Today, with the advances of 
LLMs, we are dealing with much 
larger models, trainer on much 
more data, that are being 
deployed at break-neck speed.
However, whether the models 
struggle with unseen software 
systems after deployment 
remains unclear.

We performed the analysis for 
two popular code tasks
• code summarization, which is 

evaluated with BLEU metric
• code generation, which is 

evaluated with CodeBLEU 
metric

How do code models perform on new domains?

We test the capacity for generalization to new domains by comparing the 
performance of the models that have been adapted to the new domain 
(ID) to those that only encountered out-of-domain data (OOD).
For CodeT5 we use few-shot finetuning or PE finetuning for adaptation, 
whereas for Codex and ChatGPT we use ICL.

Splits naturally 
occurring in 

software 
present 

distributional 
shift challenge

How to get better out-of-domain generalization?

CodeT5

MTL

Dual-gen 
MTL

MaML

No trainingCodex

FT

ICL

0-shot

Retrieved

ID

Random

Retrieved

Random

ID

C
od

eT
5

C
od

ex

There are many reasons why adapting with labelled data might 
impractical, so we consider other approaches that would not require 
labelled data and could potentially close the performance gap.

Domain adaptation can be effective with a very small 
amount of labelled/unlabelled data 

Retrieving examples for supervision is effective for 
combating distribution shift

For retrieved supervision we used 4/8/32 most similar examples from 
training data, combined and deduplicated for CodeT5, or used as 
demonstrations for Codex in ICL.
See the paper for more experimental results, as well results on a 
challenge scenario with a new dataset – the Vault.

See the paper for results with RougeL, CodeBERTScore and ChrF.
We separate all domains into a set of training and target domains, 
where the latter is unseen during training. For domain adaptation, we 
use some examples from a target domain and evaluate models on 
unseen examples from the same target domain.
Follow the QR code at the top for access to code, data, individual 
experimental results and model outputs.


