
We identify the entities and the actions in the query 
and how they relate to each other. We do that by 
creating the semantic parse of the query.

 
• entities are likely to be represented as nouns 
or noun phrases 

• actions will be verbs/verbal phrases
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TL; DR Method Results

Solid improvement over baselines in all evaluation setups

Results on CodeSearchNet and CoSQA datasets

How different models perform on deeper or wider queries?

How sensitive the models are to perturbations in the query?

A common way for performing semantic code search 
is using embedders for programming and natural 
languages and measuring the similarity of the query 
and the code in some latent space. 

query

Prior work

• Made programming language embedders more 
expressive

• Developed new ways to define the similarity metric 
and the corresponding latent space.

• We propose improving the query embedding for 
code retrieval so that it represents the query more 
faithfully, and thus enable precise retrieval.

• We do that by performing multi-stage reasoning 
on the query and code, which also benefit queries 
with multiple clauses or conditions. 

Are there references to array or l ist?

Are iterations over l ists present?

Are there comparisons of elements?

Are elements swapped to produce sorted result?

Task A: 1)

Task B: 1)

2)

3)

In this work

• We focus on embedding of the query
• We base our approach on our intuition of how a 

real engineer would locate a snippet of code.

Task A Finding bubble sort could require locating 
parts of the  code that look like they are handling 
arrays

Task B It then  would require checking:
• whether the found array is being traversed;
• whether its elements are being compared to 

each other; 
• and whether they are being swapped as a result 

of that comparison.

The query is modelled with a neural module network 
whose layout is defined by the structure of the 
semantic parse. 
Two distinct modules - one for entities and one for 
actions - are jointly trained within the module 
network, where entities are leaves and their output is 
passed as input to some action module. 
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Entity Discovery Module

The entity module measures semantic relevance of 
every code token to its input entity.

“dataset” [def, read, _, table, (, file, name … ]

[0.1, 0.5, 0.8,  0.1, 0.4, 0.1, 0.1, …]

[0.1, 0.4, 0., 1, 0., 0.2, 0.4 …]

Action Module

IN

OUT

• Action module works in a cloze fashion - it gets 
relevance scores and inputs for all but one entity 
in the query, and it tries to estimate the relevance 
scores for this missing entity.

• If the query corresponds to the code, the action 
module should be able to correctly estimate 
missing scores. 

• The similarity of code and query is estimated by 
measuring the similarity between the prediction of 
the action module and masked relevance scores.
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Example

Introduction
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Example

Method
CSN CSN-10K CSN-5K CoSQA

MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5

BM25 0.209 0.144 0.273 0.209 0.144 0.273 0.209 0.144 0.273 0.103 0.05 0.142

RoBERTa (code) 0.842 0.768 0.933 0.461 0.296 0.664 0.29 0.146 0.438 0.279 0.159 0.434

CuBERT 0.225 0.168 0.294 0.144 0.081 0.214 0.081 0.03 0.118 0.127 0.067 0.187

CodeBERT 0.873 0. 803 0.958 0.69 0.550 0.873 0.680 0.535 0.870 0.345 0.175 0.54

GraphCodeBERT 0.812 0.725 0.919 0.786 0.684 0.901 0.773 0.677 0.892 0.435 0.257 0.628

NS3 0.924 0.884 0.969 0.826 0.753 0.908 0.823 0.751 0.913 0.551 0.445 0.668

The number of arguments to the action affects the performance and can be used as a proxy for the complexity 
and for the level of detail in the query.

So does the number of nested action modules, which is a proxy for depth, or compositionality of the query.

We evaluated model performance on some query-code pairs, and then 
perturbed those queries so that the queries no longer correctly match the 
code.
• Models were evaluated by computing the ratio between the new 

prediction for the incorrect pair and their original prediction for the 
correct pair. 

• In a more sensitive model, the similarity after a perturbation should 
drop significantly, thus leading to a lower ratio. 

What do module outputs look like at different stages of training?

Entity discovery 
module scores vs 
their estimates by 
the action module
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