
We identify the entities and the actions in the query
and how they relate to each other. We do that by
creating the semantic parse of the query.

• entities are likely to be represented as nouns
or noun phrases

• actions will be verbs/verbal phrases

NS3 – Neuro-Symbolic Semantic Code Search
Shushan Arakelyan, Anna Hakhverdyan, Miltos Allamanis, Luis Garcia, Christophe Hauser, Xiang Ren
University of Southern California, National Polytechnic University of Armenia, Microsoft Research Cambridge, USC Information Sciences Institute
shushana@usc.edu

TL; DR Method Results

Solid improvement over baselines in all evaluation setups

Results on CodeSearchNet and CoSQA datasets

How different models perform on deeper or wider queries?

How sensitive the models are to perturbations in the query?

A common way for performing semantic code search
is using embedders for programming and natural
languages and measuring the similarity of the query
and the code in some latent space.

query

Prior work

• Made programming language embedders more
expressive

• Developed new ways to define the similarity metric
and the corresponding latent space.

• We propose improving the query embedding for
code retrieval so that it represents the query more
faithfully, and thus enable precise retrieval.

• We do that by performing multi-stage reasoning
on the query and code, which also benefit queries
with multiple clauses or conditions.

Are there references to array or l ist?

Are iterations over l ists present?

Are there comparisons of elements?

Are elements swapped to produce sorted result?

Task A: 1)

Task B: 1)

2)

3)

In this work

• We focus on embedding of the query
• We base our approach on our intuition of how a

real engineer would locate a snippet of code.

Task A Finding bubble sort could require locating
parts of the code that look like they are handling
arrays

Task B It then would require checking:
• whether the found array is being traversed;
• whether its elements are being compared to

each other;
• and whether they are being swapped as a result

of that comparison.

The query is modelled with a neural module network
whose layout is defined by the structure of the
semantic parse.
Two distinct modules - one for entities and one for
actions - are jointly trained within the module
network, where entities are leaves and their output is
passed as input to some action module.

“Load all tables

from dataset”
all tables
ARG0

LOAD
VERB

FROM
ARG1/Prep

dataset
ARG1

E(“dataset”)

A (LOAD FROM, E(ARG0), E(ARG1))

E (“all tables”)

for discovering entities (N/NP)E

for discovering actions (V/VP)A

Entity Discovery Module

The entity module measures semantic relevance of
every code token to its input entity.

“dataset” [def, read, _, table, (, file, name …]

[0.1, 0.5, 0.8, 0.1, 0.4, 0.1, 0.1, …]

[0.1, 0.4, 0., 1, 0., 0.2, 0.4 …]

Action Module

IN

OUT

• Action module works in a cloze fashion - it gets
relevance scores and inputs for all but one entity
in the query, and it tries to estimate the relevance
scores for this missing entity.

• If the query corresponds to the code, the action
module should be able to correctly estimate
missing scores.

• The similarity of code and query is estimated by
measuring the similarity between the prediction of
the action module and masked relevance scores.

[0.1, 0.5, 0., 0.8, 0.1, 0.4, 0.1, …]

[def, read, _, table, (, file, name …]

“from”

Joint

representation

IN

OUT

“Load”

“Load ??? from dataset”

“all tables”?

Example

Introduction

code

PL embedder NL embedder

Latent space

Example

Method
CSN CSN-10K CSN-5K CoSQA

MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5

BM25 0.209 0.144 0.273 0.209 0.144 0.273 0.209 0.144 0.273 0.103 0.05 0.142

RoBERTa (code) 0.842 0.768 0.933 0.461 0.296 0.664 0.29 0.146 0.438 0.279 0.159 0.434

CuBERT 0.225 0.168 0.294 0.144 0.081 0.214 0.081 0.03 0.118 0.127 0.067 0.187

CodeBERT 0.873 0. 803 0.958 0.69 0.550 0.873 0.680 0.535 0.870 0.345 0.175 0.54

GraphCodeBERT 0.812 0.725 0.919 0.786 0.684 0.901 0.773 0.677 0.892 0.435 0.257 0.628

NS3 0.924 0.884 0.969 0.826 0.753 0.908 0.823 0.751 0.913 0.551 0.445 0.668

The number of arguments to the action affects the performance and can be used as a proxy for the complexity
and for the level of detail in the query.

So does the number of nested action modules, which is a proxy for depth, or compositionality of the query.

We evaluated model performance on some query-code pairs, and then
perturbed those queries so that the queries no longer correctly match the
code.
• Models were evaluated by computing the ratio between the new

prediction for the incorrect pair and their original prediction for the
correct pair.

• In a more sensitive model, the similarity after a perturbation should
drop significantly, thus leading to a lower ratio.

What do module outputs look like at different stages of training?

Entity discovery
module scores vs
their estimates by
the action module

	Slide 1

